AP EXAM FORMULAS

DESCRIPTIVE STATISTICS				
Formula	Description	Calculator		
$\bar{x} = \frac{\sum x_i}{n}$	Mean	1 Vor State		
$s_x = \sqrt{\frac{1}{n-1} \sum (x_i - \overline{x})^2}$	Standard Deviation	1-Var Stats		
$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}}$	Pooled standard deviation for difference of means	2-Samp T Test		
$\hat{y} = b_0 + b_1 x$	LSRL			
$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x - x_i)^2}$	Slope of LSRL			
$b_0 = \overline{y} - b_1 \overline{x}$	y-intercept of LSRL	LinReg (a + bx)		
$r = \frac{1}{n-1} \sum \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$	Correlation			
$b_1 = r \frac{s_y}{s_x}$	Slope of LSRL			
$s_{b_1} = \frac{\sqrt{\frac{\sum (y_1 - \hat{y})^2}{n - 2}}}{\sqrt{\sum (x_i - \overline{x})^2}}$	Standard deviation of LSRL slope	LinReg T Test		

PROBABILITY				
Formula	Description	Calculator		
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	Addition Rule			
$P(A B) = \frac{P(A \cap B)}{P(B)}$	Conditional Probability			
$E(X) = \mu_x = \sum x_i p_i$	Mean of a Random Variable			
$\operatorname{Var}(X) = \sigma_x^2 = \sum (x_i - \mu_x)^2 p_i$	Variance of a Random Variable			
If X has a Binomial distribution with parameters n and p , then:				
$P(X=k) = \binom{n}{k} p^{k} (1-p)^{n-k}$	Binomial Probability $\binom{n}{k} = \frac{n!}{k!(n-k)!}$	binompdf (n, p, k) binomcdf if $X \le k$		
$\mu_x = np$	Mean (Expected Value) of X			
$\sigma_{x} = \sqrt{np(1-p)}$	Standard Deviation of X			
$\mu_{\hat{p}} = p$	Mean of a Sample Proportion			
$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$	Standard Deviation of a Sample Proportion			
If \overline{x} is the mean of a random sample size n from an infinite population with mean μ and standard deviation σ , then:				
$\mu_{\bar{x}} = \mu$	Mean of a Sample			
$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$	Standard Deviation of a Sample			

INFERENTIAL STATISTICS				
Formula	Description	Calculator		
statistic – parameter standard deviation of statistic	Standardized test statistic	invNorm invT		
statistic ± (critical value) · (standard deviation of statistic)	Confidence interval	Z Interval T Interval 2-Samp Z Int 2-Samp T Int 1-Prop Z Int 2-Prop Z Int		
Single-Sample (Matched Pairs)				
$\frac{\sigma}{\sqrt{n}}$	Standard Deviation of Sample Mean (\bar{x})	Z-Test T-Test		
$\sqrt{\frac{p(1-p)}{n}}$	Standard Deviation of Sample Proportion (\hat{p})	1-Prop Z Test		
	Two-Sample			
$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	Standard Deviation of Difference of sample means	2-Samp Z Test		
		2-Samp T Test		
$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$	Standard Deviation of Difference of sample proportions	2-Prop Z Test		
$\sum \frac{\left(\text{observed - expected}\right)^2}{\text{expected}}$	Chi-square test statistic (X^2)	$Matrix \rightarrow X^2-Test$		