AP Statistics

Name:

- 1. Suppose we want to conduct a test to determine whether Sarah's age is useful in predicting her height. Write appropriate null and alternative hypotheses for such a test.
- 2. What is the equation of the least-squares regression line?
- 3. The t statistic for testing H_0 has been left out. Use the output to find t.
- 4. How many degrees of freedom does t have?
- 5. Use your TI-83 and the answers to the previous parts to approximate the P-value of t against Ha.
- 6. Write your conclusions in plain language.
- 7. Construct a 95% confidence interval for the population regression slope.

Ideal proportions Once upon a time, a class like yours made measurements of their arm span and height. They entered their results into a Minitab worksheet, requested least squares regression of height on arm span (both in inches) and obtained the following output:

Predictor	Coef	Stdev	t-ratio	p	
Constant	11.547	5.600	2.06	0.056	
Arm span	0.84042	0.08091	10.39	0.000	
s = 1.613	R-sq =	87.1% R-	-sq(adj) = {	36.3%	

A residual plot for the data looks like this:

- 1. Determine the equation of the least squares regression line from the printout.
- 2. In your opinion, is the least squares line an appropriate model for the data? Would you be willing to predict a student's height, knowing that his arm span is 76 inches? Explain. Then do it use this model to predict the height of a student whose arm span is 76 inches.
- 3. Estimate the parameters α , β , and σ .
- 4. Construct a 95% confidence interval for the true slope of the regression line.