Sec 4.1
Learning Targets

- Identify biased and unbiased sampling methods
Statistical Studies

Observational Studies

Surveys/Polls

Experiments
Note

Always accept the results of a study with caution!
THE WORDS THEY USED

Unlike in 2004, this year the Republicans mentioned the opposing candidate less frequently than the Democrats, mentioning Sen. Barack Obama about a third as often as the Democrats mentioned Sen. John McCain.

The Democrats also pushed a couple of catch phrases of the Obama campaign in their speeches: the need for “change” and that the country doesn’t need “four more years” of a Republican administration.

And the nomination of Gov. Sarah Palin of Alaska as the Republican vice presidential candidate brought a new term into the convention vocabulary: “hockey mom,” which popped up in several speeches.

Source: Federal News Service transcripts
Surveys/Polls

Draws conclusions about a population using a sample
Sample
Subset of the population of interest

Bad Samples (Biased)
- Voluntary Response Samples
- Convenience Samples
Good Samples

1) Simple Random Sample (SRS)

"Consists of n individuals from the population chosen in a way that every set of n individuals has an equal chance to be part of the sample."
Random vs SRS

Ex: Need 3 people from a population of 12

1 2 3 4 5 6 7 8 9 10 11 12

↑

Even if person 3 is selected at random, persons 1, 2 and 4 have no chance of being selected.
Choosing An SRS

1) Give each individual a numerical label

2) Use RandomDigitTable or Calculator

Same # Digits
1 - 9
01 - 10
001 - 100
EXAMPLE

Spring Break!
Choosing an SRS with Table D

The school newspaper is planning an article on family-friendly places to stay over spring break at a nearby beach town. The editors intend to call 4 randomly chosen hotels to ask about their amenities for families with children. They have an alphabetized list of all 28 hotels in the town.

PROBLEM: Use Table D at line 130 to choose an SRS of 4 hotels for the editors to call.

SOLUTION: We'll use the two-step process for selecting an SRS using Table D.

Step 1: Label. Two digits are needed to label the 28 resorts. We have added labels 01 to 28 to the alphabetized list of resorts below.

01	Aloha Kai	08	Captiva	15	Palm Tree	22	Sea Shell
02	Anchor Down	09	Casa del Mar	16	Radisson	23	Silver Beach
03	Banana Bay	10	Coconuts	17	Ramada	24	Sunset Beach
04	Banyan Tree	11	Diplomat	18	Sandpiper	25	Tradewinds
05	Beach Castle	12	Holiday Inn	19	Sea Castle	26	Tropical Breeze
06	Best Western	13	Lime Tree	20	Sea Club	27	Tropical Shores
07	Cabana	14	Outrigger	21	Sea Grape	28	Veranda

Step 2: Table. To use Table D, start at the left-hand side of line 130 and read two-digit groups. Skip any groups that aren't between 01 and 28, as well as any repeated groups. Continue until you have chosen four resorts. Here is the beginning of line 130:

63051 64517 87174 09517 84534 06489 87201 97245

The first 10 two-digit groups are:

| 69 | 05 | 16 | 48 | 17 | 87 | 17 | 40 | 95 | 17 |
| Skip | Skip | Skip | Skip | Skip | Skip | Too big | Too big | Repeat | Too big |

We skip 5 of these 10 groups because they are too high (over 28) and 2 because they are repeats (both 17s). The hotels labeled 05, 16, and 17 go into the sample. We need one more hotel to complete the sample. The remaining 10 two-digit groups in line 130 are:

| 84 | 53 | 40 | 64 | 89 | 87 | 20 | 19 | 72 | 45 |
| Skip | Skip | Skip | Skip | Skip | Skip | Too big |

Our SRS of 4 hotels for the editors to contact is: 05 Beach Castle, 16 Radisson, 17 Ramada, and 20 Sea Club.

For Practice Try Exercise 11

As you saw in the previous example, using Table D to select an SRS can be time-consuming. The Simple Random Sample applet can help you quickly choose an SRS for populations of up to 500 individuals. Your calculator can do even better.
<table>
<thead>
<tr>
<th>Line</th>
<th>Random digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>19223 95034 05756 28713 96409 12531 42544 82853</td>
</tr>
<tr>
<td>102</td>
<td>73676 47150 99400 01927 27754 42648 82425 36290</td>
</tr>
<tr>
<td>103</td>
<td>45467 71709 77558 00095 32863 29485 82226 90056</td>
</tr>
<tr>
<td>104</td>
<td>52711 38889 93074 60227 40011 85848 48767 52573</td>
</tr>
<tr>
<td>105</td>
<td>95952 94007 69971 91481 60779 53791 17297 59335</td>
</tr>
<tr>
<td>106</td>
<td>68417 35013 15529 72765 85089 57067 50211 47487</td>
</tr>
<tr>
<td>107</td>
<td>82739 57890 20807 47511 81676 55300 94383 14983</td>
</tr>
<tr>
<td>108</td>
<td>60940 72024 17868 24943 61790 90656 87964 18883</td>
</tr>
<tr>
<td>109</td>
<td>36009 19365 15412 39638 85453 46816 83485 41979</td>
</tr>
<tr>
<td>110</td>
<td>38448 48789 18338 24697 39364 42006 76688 08708</td>
</tr>
<tr>
<td>111</td>
<td>81486 69487 60513 09297 00412 71238 27649 39950</td>
</tr>
<tr>
<td>112</td>
<td>59636 88804 04634 71197 19352 73089 84898 45785</td>
</tr>
<tr>
<td>113</td>
<td>62568 70206 40325 03699 71080 22553 11486 11776</td>
</tr>
<tr>
<td>114</td>
<td>45149 32992 75730 66280 03819 56202 02938 70915</td>
</tr>
<tr>
<td>115</td>
<td>61041 77684 94322 24709 73698 14526 31893 32592</td>
</tr>
<tr>
<td>116</td>
<td>14599 26056 31424 80371 65103 62253 50490 61181</td>
</tr>
<tr>
<td>117</td>
<td>38167 98532 62183 70632 23417 26185 41448 75532</td>
</tr>
<tr>
<td>118</td>
<td>73190 32533 04470 29669 84407 90785 65956 86382</td>
</tr>
<tr>
<td>119</td>
<td>95857 07118 87664 92099 58806 66979 98624 84826</td>
</tr>
<tr>
<td>120</td>
<td>35476 55972 39421 65850 04266 35435 43742 11937</td>
</tr>
<tr>
<td>121</td>
<td>71487 06984 29077 14863 61683 47052 62224 51025</td>
</tr>
<tr>
<td>122</td>
<td>13873 81598 95002 90098 73592 75186 87136 95761</td>
</tr>
<tr>
<td>123</td>
<td>54580 81507 27102 56027 55892 33063 41842 81868</td>
</tr>
<tr>
<td>124</td>
<td>71035 09001 43367 49497 72179 96785 27611 95196</td>
</tr>
<tr>
<td>125</td>
<td>96746 12149 37823 71868 18442 35119 62103 39244</td>
</tr>
<tr>
<td>126</td>
<td>96927 19931 36809 74192 77567 88741 48409 41903</td>
</tr>
<tr>
<td>127</td>
<td>45909 99477 25330 64559 40085 16925 85117 36071</td>
</tr>
<tr>
<td>128</td>
<td>15689 14227 06565 14374 13352 49367 81982 87209</td>
</tr>
<tr>
<td>129</td>
<td>36759 58984 68288 22913 18638 54303 00793 08727</td>
</tr>
<tr>
<td>05</td>
<td>00501 68417 81194 14873 04197 85576 45194 96565</td>
</tr>
<tr>
<td>16</td>
<td>05007 16652 88194 14873 04197 85576 45194 96565</td>
</tr>
<tr>
<td>17</td>
<td>68732 55259 84292 08796 43165 93739 32098 97150</td>
</tr>
<tr>
<td>18</td>
<td>95740 41807 65651 33302 07051 93623 18312 09547</td>
</tr>
<tr>
<td>19</td>
<td>27816 78416 18329 21337 35213 37741 04312 68508</td>
</tr>
<tr>
<td>20</td>
<td>66925 55658 39100 78458 11206 19876 87151 31260</td>
</tr>
<tr>
<td>21</td>
<td>00842 44793 77377 37844 75592 08563 79140 92454</td>
</tr>
<tr>
<td>22</td>
<td>53645 66682 61421 47836 12609 15373 98481 14592</td>
</tr>
<tr>
<td>23</td>
<td>66831 68908 40772 21558 47781 33868 79177 06928</td>
</tr>
<tr>
<td>24</td>
<td>55888 99404 70708 41098 43563 56934 48394 51719</td>
</tr>
<tr>
<td>25</td>
<td>12975 13258 13048 45144 72321 81940 00360 02428</td>
</tr>
<tr>
<td>26</td>
<td>96767 35964 23822 96012 94591 65194 50842 53372</td>
</tr>
<tr>
<td>27</td>
<td>72829 50232 97892 63408 77919 44575 24870 04178</td>
</tr>
<tr>
<td>28</td>
<td>88565 42628 17797 49376 61762 16953 88604 12724</td>
</tr>
<tr>
<td>29</td>
<td>62964 88145 80383 69453 46109 59050 69680 00900</td>
</tr>
<tr>
<td>30</td>
<td>19687 12633 57857 95806 09931 02150 43163 58636</td>
</tr>
<tr>
<td>31</td>
<td>37609 59057 66967 83401 60705 23848 90597 93600</td>
</tr>
<tr>
<td>32</td>
<td>54973 86278 88737 74351 47500 84552 19909 67181</td>
</tr>
<tr>
<td>33</td>
<td>00694 05997 19644 65441 20903 62371 22725 53340</td>
</tr>
<tr>
<td>34</td>
<td>71546 05233 53946 68743 72460 27601 45403 88692</td>
</tr>
<tr>
<td>35</td>
<td>07511 88915 41267 16853 84569 79367 32337 03316</td>
</tr>
</tbody>
</table>
2) Stratified Random Sample
- Divide population into groups of similar individuals (strata)
- Choose an SRS from each group

Ex: Student opinion poll

Divide population by grade (9-12) → SRS each grade → Combine
3) Cluster Sampling
 - Divide population into smaller groups (clusters)
 - SRS of clusters
 - Include all individuals in clusters

Ex: All G1 Classes \rightarrow n Classes \rightarrow All students in each chosen class comprise sample
4) Systematic Random Sample
 - Randomly choose 1st individual
 - Choose every nth person afterwards

Ex: Exit polls (elections)
AP Statistics
Sampling Designs

At WHS there are 50 students taking AP Statistics this year. The students are randomly assigned to one of 5 different groups (A, B, C, D or E) of 10 students. Each group is instructed differently. At the end of the year, all students were given the same final exam. Those results are summarized in the table below. Our goal is to sample 10 students to estimate the mean final exam score of all 50 students.

Population of interest is All 50 AP Stats Students
Parameter of interest is Average Final Exam Grade

<table>
<thead>
<tr>
<th>Group</th>
<th>Final Exam Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>83 86 90 91 94 85 88 91 92 96</td>
</tr>
<tr>
<td>B</td>
<td>61 68 73 77 79 66 70 76 78 83</td>
</tr>
<tr>
<td>C</td>
<td>86 90 93 95 98 88 92 94 97 99</td>
</tr>
<tr>
<td>D</td>
<td>53 58 62 66 73 55 60 64 71 79</td>
</tr>
<tr>
<td>E</td>
<td>59 71 77 88 92 68 75 84 90 96</td>
</tr>
</tbody>
</table>

\[\bar{x} = 80 \]

Sampling Strategy #1
1. Assign each student a number from 1 to 50 using the table below. These numbers will correspond with student scores in the original table above.

<table>
<thead>
<tr>
<th>Group</th>
<th>Final Exam Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>86</td>
</tr>
<tr>
<td>B</td>
<td>77</td>
</tr>
<tr>
<td>C</td>
<td>88</td>
</tr>
<tr>
<td>D</td>
<td>64</td>
</tr>
<tr>
<td>E</td>
<td>66</td>
</tr>
</tbody>
</table>

2. Use the randInt command on your calculator to select 10 distinct students. Circle the numbers as you select them.

3. Compute the mean of your sample and record on the board. \[\bar{x} = 81.7 \]

Sampling Strategy #2
1. For each group (A-E), assign the students a number from 1 to 10 using the table below. These numbers will correspond with student scores in the original table above.

<table>
<thead>
<tr>
<th>Group</th>
<th>Final Exam Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>61 86 91 91 70 64 96</td>
</tr>
<tr>
<td>B</td>
<td>69 93 98 92 64 96</td>
</tr>
</tbody>
</table>

2. Use the randInt command on your calculator to select 2 distinct students from each group. You will choose 2 students from each of the 5 groups. Circle the numbers as you select them.

3. Compute the mean of your sample and record on the board. \[\bar{x} = 80.9 \]
Sampling Strategy #3
1. Assign each group a number from 1 to 5.

2. Use the randInt command on your calculator to select 1 of the 5 groups. All 10 students in this group will be your sample.

3. Compute the mean of your sample and record on the board. $\overline{x} = 93.2$

Sampling Strategy #4
1. Assign each student a number from 1 to 50 using the table below.

<table>
<thead>
<tr>
<th>Group</th>
<th>Final Exam Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>86</td>
</tr>
<tr>
<td>B</td>
<td>68</td>
</tr>
<tr>
<td>C</td>
<td>90</td>
</tr>
<tr>
<td>D</td>
<td>56</td>
</tr>
<tr>
<td>E</td>
<td>71</td>
</tr>
</tbody>
</table>

2. Use the randInt command on your calculator to select 1 of the first 5 students. Then choose every 5th student from the 1st student chosen. Circle the numbers as you select them.

3. Compute the mean of your sample and record on the board. $\overline{x} = 75.8$

Follow-up Questions

2. Which sampling method was the best and what characteristics did this method possess (for this data)?
 - Stratified Random Sample (Sample average closest to actual average)
 - Scores varied least

3. The following sampling methods always result in a bias. Name the sampling strategy.
 a. The principal tells all students to e-mail him their final exam scores. Voluntary Response Sample

 b. A student in the class only asks their friends what their final exam score was. Convenience Sample
Sec 4.1 (cont)
Learning Target

- Recognize sources of bias in sampling and surveys/polls
Inference (40% of AP Exam)

- Drawing conclusions about a population based on a sample
- Random samples (SRS) reduce bias
- Larger samples provide more accurate results
Sampling Errors

1) Using a sampling method that is not random

2) Undercoverage - leaving out members of the population from the sampling frame (the list of individuals from which the sample is taken)
Non-Sampling Errors

1) Nonresponse
 Selected members of sample cannot or refuse to respond
2) Response Bias

Interviewer affects outcome ... due to age, race, gender, position etc, the respondent does not answer truthfully.

Ex: Two girls at the mall:

1) Do you believe in Santa Claus? 20% Yes

2) Same question asked by 5-year old sister ... 100% Yes
3) Wording Effect
Questions confusing or biased (slanted toward specific response)

Ex: Do you prefer milk or orange juice as a breakfast drink? 14\% Milk
Milk contains high levels of Vitamin D and Calcium. Do you prefer milk or orange juice as a breakfast drink? 64\% Milk
How Are Polls Conducted?

Public opinion polls would have less value in a democracy if the public -- the very people whose views the polls represent -- didn't have confidence in the results. This confidence does not come easily. The process of polling is often mysterious, particularly to those who don't see how the views of 1,000 people can represent those of hundreds of millions. Many Americans contact Gallup each year:

1. to ask how Gallup's results can differ so much from their own personal impressions of what people think;
2. to learn how Gallup selects people for inclusion in its polls; and
3. to find out why they have never been interviewed.

The public's questions indicate a sincere desire to find out more about how polling is actually conducted, which this FAQ section will address.

The Sampling Issue

Probability sampling is the fundamental basis for all survey research. The basic principle: If selected correctly, a randomly selected small sample of a population of people can represent the attitudes, opinions, or projected behavior of all of the people from which the sample is obtained.

The fundamental goal of a survey is to come up with the same results that would have been obtained had every member of a population been interviewed. For national Gallup polls, in other words, the objective is to represent the opinions of a sample of people who hold the same opinions that would have been obtained if it were possible to interview all adult Americans in the country. There are difficulties involved at every step of the process of attempting to reach this goal, but this overall objective stands as the central organizing principle for Gallup's methodological procedures.

The key to reaching this objective is a fundamental principle called equal probability of selection, which states that if every member of a population has an equal -- or in some instances a known -- probability of being selected in a sample, then that sample will be representative of the population.

Thus, it is Gallup's goal in selecting samples to allow every adult American an equal or known chance of falling into the sample. How that is done, of course, is the key to the success or failure of the process.

Selecting a Random Sample

To conduct a national opinion poll, Gallup first chooses a method by which all or most Americans have an equal or known likely chance to be selected. Of course, most Americans have a place of residence, making it immediately obvious that if it were possible to sample for a list of all residential addresses in the country, the principle of comprehensive sampling frame could be achieved.

With this in mind, Gallup interviewers conducted the earliest polls in person by selecting places of residences from all possible geographic areas within the country and then fanning out across the country knocking on Americans' doors. This was the standard method of interviewing for nearly 50 years, from about 1935 to the mid-1980s, and it was a demonstrably reliable method.
Gallup polls across the 12 presidential elections held between 1936 and 1984 were highly accurate, with the average error in Gallup’s final estimate of the election being less than three percentage points.

It became obvious over time that household sampling with in-home interviewing had problems. For one thing, it was increasingly expensive. Americans became increasingly resistant to allowing interviewers to come into their homes to conduct surveys. And the need for rapidly gathered data made the in-home interview procedure less and less attractive.

Gallup then turned its attention to the telephone. By 1986, a sufficient proportion of American households had at least one telephone to make telephone interviewing a viable and substantially less expensive alternative to the in-person method. By the end of the 1980s, Gallup was conducting the vast majority of its national surveys by telephone.

Another important change was becoming obvious by the mid- to late 2000s: the increasing use of cell phones by Americans. As a result, by 2008, Gallup had shifted its interviewing to include traditional landline and cell phone sampling. Today, with increasing shifts in communication that may eventually move some Americans beyond any type of phone toward texting and written communication, there has been increased attention on the part of survey professionals to the possible benefits of a move back to “old-fashioned” residential, address-based sampling.

For now, however, the vast majority of Gallup surveys intended to represent the national population are based on interviews conducted by landline and cell telephones. This method builds off of the central assumption that most Americans still either live in a residence with a telephone or own a personal cell phone. So, reaching people on their telephones is the starting place for current national surveys.

Procedurally, Gallup includes several steps in putting together its poll with the objective of letting every American household and every American adult have an equal chance of falling into the sample.

Initially, Gallup clearly identifies and describes the population that a given poll is attempting to represent.

If Gallup was polling about baseball fans on behalf of the sports page of a major newspaper, the target population might be all Americans aged 18 and older who say they are fans of the sport of baseball. If the poll were being conducted on behalf of Major League Baseball, however, the target audience the client requires might more specific, such as people aged 12 and older who watch at least five hours of MLB games on television, or in-person, each week. And so on.

In the case of Gallup polls that track elections and major political, social, and economic questions of the day, the target audience is generally referred to as “national adults.” Strictly speaking, the target audience is all adults, aged 18 and older, living in United States. In effect, the population represented becomes all Americans aged 18 and older who have a telephone.

Next, Gallup chooses or designs a method to sample the target population randomly.

The findings from Gallup’s telephone surveys are based on Gallup’s standard national telephone samples, consisting of directory-assisted random-digit telephone samples using a proportionate, stratified sampling design. This complicated process starts with a computerized list of all
telephone exchanges in America, residential and cellular, along with estimates of the number of phones these exchanges have attached to them. The computer, using a procedure called random-digit-dialing (RDD), actually creates phone numbers from those exchanges and then generates telephone samples from those. In essence, this procedure creates a list of all possible household phone numbers and all possible cell phone numbers in America and then selects a subset of numbers from that list for Gallup interviewers to call.

It's important to go through this complicated procedure for two reasons. A significant percentage of residential phones are unlisted. And, almost all cell phone numbers are unlisted in the sense that there is no phone book or other comprehensive listing of them. The random-digit-dial procedure allows telephone exchanges to be the main medium of sampling, with the digits of particular phone numbers added randomly.

Selecting the Individual to Be Interviewed

Within each contacted household reached via landline, an interview is sought with the adult 18 years of age or older living in the household who has had the most recent birthday. (This is a method pollsters commonly use to make a random selection within households without having to ask the respondent to provide a complete roster of all adults living in the household.) Gallup does not use the same respondent selection procedure when making calls to cell phones because they are typically associated with one individual rather than shared among several members of a household.

The Number of Interviews or Sample Size Required

One key question faced by Gallup statisticians is how many interviews does it take to provide an adequate cross section of Americans? The answer is not many -- if the respondents to be interviewed are selected entirely at random, giving every adult American an equal or known probability of falling into the sample. The typical sample size for a Gallup poll, either a traditional stand-alone poll or one night's interviewing from Gallup's Daily tracking, is 1,000 national adults.

Broadly speaking, the actual number of people that need to be interviewed for a given sample is to some degree less important than the soundness of the fundamental equal probability of selection principle. This is something many people find hard to believe, if respondents are not selected randomly, Gallup could have a poll with a million people and still be significantly less likely to represent the views of all Americans than a much smaller sample of 1,000 people selected randomly.

To be sure, there is some gain in sampling accuracy that comes from increasing sample sizes. Using common sense and sampling theory, a sample of 1,000 people is most likely going to be more accurate than a sample of 20. Surprisingly, however, once the survey sample approaches 500, 600, 700, or more, there are fewer and fewer accuracy gains that come from increasing the sample size. Gallup and other major organizations use sample sizes of between 1,000 and 1,500 for standard surveys because they provide a solid balance of accuracy against the increased economic cost of larger and larger samples. If Gallup were to use a sample of 4,000 randomly selected adults each time it did a poll, the increase in accuracy over a well-done sample of 1,000 would be minimal, and for sample accuracy reasons, would not justify the increase in cost.
There are, however, other reasons why large sample sizes can be important including, in particular, the ability to subset the sample into small population segments for analysis purposes. This is the great advantage provided by aggregates of Gallup’s Daily tracking samples.

Statisticians over the years have developed specific ways of measuring the accuracy of samples -- so long as the fundamental principle of equal or known probability of selection is adhered to when the sample is drawn.

For example, with a sample size of 1,000 national adults (derived using careful random selection procedures), the results are highly likely to be accurate within a margin of error of ±4 percentage points. Thus, if a president’s approval rating is 50%, the margin of error indicates that the true rating (that is, the rating that would be obtained had Gallup interviewed every adult in American) is likely to be between 54% and 46%. It is unlikely to be higher or lower than that.

To be more specific, the laws of probability say that if Gallup was to conduct the same survey 100 times, asking people in each survey to rate the job President X is doing as president, in 95 out of those 100 polls, his rating would be between 46% and 54%. In five of those surveys, his rating would be higher or lower than that due to chance error.

If Gallup increases a poll sample size to 2,000, the results would then be accurate within ±2% of the underlying population value, a gain of two percentage points in terms of accuracy, but with a 100% increase in the cost of conducting the survey. These are the cost value decisions that Gallup and other survey organizations make when they decide on sample sizes for their surveys.

Weighting the Sample

After Gallup collects and processes survey data, each respondent is assigned a weight so that the demographic characteristics of the total weighted sample of respondents match the latest estimates of the demographic characteristics of the adult population available from the U.S. Census Bureau. Gallup weights data to census estimates for gender, race, age, educational attainment, and region.
UNITED STATES UNEMPLOYMENT RATES
(Fall 2015)

US Population
308 M

Labor Force
Civilian Noninstitutionalized Population* = 250 M
Number Employed = 148 M
Number Unemployed = 102 M

Unemployment Rate = \(\frac{102M}{148M} = 40.8\% \)

*Number of US Population older than 16 years old, not in the military and not institutionalized in a prison, mental hospital or nursing home (Bureau of Labor Statistics)

Labor Force Participation*
Labor Force Working or Looked for Work in Last 4 weeks* = 157 M
Number Employed = 148 M
Number Unemployed = 9 M

Unemployment Rate = \(\frac{9M}{157M} = 5.7\% \)

*The numbers of employed and unemployed (those who are currently jobless, available to work and actively looking for work) are determined monthly using a Current Population Survey (CPS) administered by the US Census Bureau through phone calls to a sample of 60,000 US households. There is a 90% chance that the number of unemployed is within 300,000 of the actual number in the population.
Sec 4.2
Learning Targets

- Identify common experimental designs
- Know characteristics of a well-designed experiment
Experimental Studies

- Deliberately imposes a "treatment" to influence a response

 - Subjects / Experimental Units
 - Explanatory Variable(s) - Factors
 - Treatment(s)
 - Response Variable(s)

- Common on AP Exams
Common Designs
- Between Groups / Independent Samples
- Within Groups / Repeated Measures
- Matched Pairs
Between Groups (Inattentive Blindness)

Vol

RA

Treatment Group (n = 125) → Saw Gorilla 39%

RA

Control Group (n = 127) → Saw Gorilla 80%

Compare
Reducing Placebo Effect

1) Use LARGE # Subjects

2) Perform Double Blind Study - neither subject nor experimenter knows which is placebo
Lurking Variables

- Variable(s) that might influence the response variable in an experiment

- Common Response / Confounding
LURKING VARIABLES
(Common Response)

- Motivation for academic success
- Fear of failure/success
- Family or school expectations
- Extracurricular activities
- Learning disability
- Difficulty of classes
- Importance of classes (ie, ACP)
- Intelligence, aptitude, IQ
- Time management
- Age/Maturity
- Method of study
- Personal choices/bad decisions
- Influence of friends
LURKING VARIABLES
(Confounding)

*Predicted AP Exam Score = -9.0157 + .1421(Semester Grade)

- Level of understanding
- Time spent preparing for Exam
- Test taking abilities/skills
- Difficulty of Exam
- Physical factors (fatigue etc)
- Emotional factors
- Level of caring
- Motivation (to save money)
- Cheating
- Intake needs
- SES
- Attention to detail
- Testing environment/conditions
- Luck
Between Groups Block Designs

Used to address lurking variables

Vol

Block 1
(Male)

Block 2
(Female)

RA
Treatment
Compare

RA
Control
Compare

RA
Treatment
Compare

RA
Control
Compare
Inference For Experiments

If difference(s) between treatment and control group is larger than we expect to find by chance, then we say the results are statistically significant.
Note

Cause/effect can only be determined through replication of results!
Sec 4.2 (cont)
Common Experimental Designs
- Between Groups/Independent Samples
- Within Groups/Repeated Measures
- Matched Pairs
Does the Fatty Diet reduce weight?

Vol

RA

Measure Weight → 4 wks on Fatty Diet → Measure Weight

RA

Measure Weight → 4 wks on Normal Diet → Measure Weight

A better design than Between Groups...
Within Subjects / Repeated Measures

- Subjects are own control

\[\text{Before Weight} \rightarrow \text{Diet} \rightarrow \text{After Weight} \rightarrow \text{Compare Differences} \]
Matched Pairs

- Match pairs of experimental units or subjects with similar characteristics (gender, IQ, SES...).
Matched Pairs

- Match pairs of experimental units or subjects with similar characteristics (gender, IQ, SES...)

- Randomize order of treatment in each pair
Vol → A, B

Compare differences in each pair

Vary treatment and control
Sec 4.3
Learning Target

- Use studies wisely (ICR)
Using Studies Wisely

1) Inference about a population requires:
 a) Randomly selected individuals (observational studies, surveys and polls) or
Using Studies Wisely

1) Inference about a population requires:
 a) Randomly selected individuals (observational studies, surveys and polls) or
 b) Randomly assigned treatments (experiments)
2) Cause effect inferred through:
 a) Replications of well-designed experiments or...
b) Evidence of causation from observational/correlation studies but only when:

- Correlation is strong
- Correlation is consistent
- Larger values of explanatory variable produce stronger responses
- The alleged causation is plausible
3) Accept the results of any study with caution!

Ex: Observational Study (NYTimes, 2017)

“Since 1968, there have been more gun deaths than the deaths of those killed in all American wars”

* Gun deaths included those by suicide (**2/3**)

Gun deaths - Suicide deaths = \(\frac{1}{5} \) (Those killed in all AM wars)