MATCHED PAIRS T TEST

This test is used to compare the responses to a treatment in a within-groups design (ie, does an SAT prep course improve an individual’s SAT scores?).

A listening test with a maximum score of 36 was administered to Spanish teachers before and after an institute designed to improve Spanish listening skills.

<table>
<thead>
<tr>
<th>Sub</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>30</td>
<td>28</td>
<td>31</td>
<td>26</td>
<td>20</td>
<td>30</td>
<td>34</td>
<td>15</td>
<td>28</td>
<td>20</td>
<td>30</td>
<td>29</td>
<td>31</td>
<td>29</td>
<td>34</td>
<td>20</td>
<td>26</td>
<td>25</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>Post</td>
<td>29</td>
<td>30</td>
<td>32</td>
<td>30</td>
<td>16</td>
<td>25</td>
<td>31</td>
<td>18</td>
<td>33</td>
<td>25</td>
<td>32</td>
<td>28</td>
<td>34</td>
<td>32</td>
<td>32</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Dif</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>-4</td>
<td>-5</td>
<td>-3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>-1</td>
<td>3</td>
<td>3</td>
<td>-2</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Determine if the institute improved listening skills at the 5% significance level.

CALCULATE THE DIFFERENCES BETWEEN THE 2 TREATMENTS:

P) STATE POPULATION PARAMETER:

μ = the mean improvement in listening scores for teachers attending the institute (Post – Pre)

H) STATE HYPOTHESES:

H₀ : μ = 0
Hₐ : μ > 0

A) VERIFY CONDITIONS REQUIRED FOR TEST:

a) Random

Unknown; we may not be able to generalize the results to all teachers attending the institute!

b) Normal sampling distribution- normal population or large sample size (n > 30) or justification for normal distribution (n < 30) after omitting outliers

Since the sample size is small, put data (differences) into list and check:

a) modified box plot... indicates no outliers

b) normal probability plot indicates a normal distribution (a histogram shows a slight skew).

c) Independence

N > 10n > 10(20) > 200 Spanish teachers attending institute… probably?
T) PERFORM TEST:

a) USING TABLE B:

i) Determine mean (\bar{x}) and standard deviation (s)

$$\bar{x} = 1.45 \quad s = 3.2032$$

ii) Calculate t statistic

$$t = \frac{\bar{x} - 0}{\frac{s}{\sqrt{n}}} = 2.024$$

iii) Determine degrees of freedom

$$df = n - 1 = 20 - 1 = 19$$

iv) Determine critical t-value and P-value

From Table B $(df = 19$ and $\alpha = .05)$, the critical t value is 1.729.

Since $2.024 > 1.729$, P-value < .05.

b) USING CALCULATOR:

STAT \rightarrow TESTS \rightarrow T-Test… P-value = .029

DISTR \rightarrow: tcdf (min, max, df) = (2.024, 100, 19) = .0286

S) STATE CONCLUSION:

At $\alpha = .05$ significance level, the study gives evidence that listening scores improved after the institute (P-value = .029) but the evidence is not overwhelming (since the results are not significant at $\alpha = .01$) We, nonetheless, reject the null hypothesis.
CONFIDENCE INTERVAL (Use PAIS):

A 90% confidence interval for the mean increase in listening scores can be found using:

\[
\text{STAT} \rightarrow \text{TESTS} \rightarrow \text{T Interval} = (0.21, 2.69)
\]

We are 90% confident that the mean increase in the listening scores was between 0.21 and 2.69 points after teachers participated in the institute.