Directions: Work on these sheets.

Part 1: Multiple Choice. Circle the letter corresponding to the best answer.

A psychologist studied the number of puzzles subjects were able to solve in a five-minute period while listening to soothing music. Let X be the number of puzzles completed successfully by a subject. X had the following distribution:

X	1	2	3	4
Probability	0.2	0.4	0.3	0.1

- 1. Using the above data, what is the probability that a randomly chosen subject completes at least 3 puzzles in the five-minute period while listening to soothing music?
 - (a) 0.3
 - (b) 0.4
 - (c) 0.6
 - (d) 0.9
 - (e) The answer cannot be computed from the information given.
- 2. Using the above data, P(X < 3) is
 - (a) 0.3
 - (b) 0.4
 - (c) 0.6
 - (d) 0.9
 - (e) The answer cannot be computed from the information given.
- 3. Using the above data, the mean μ of X is
 - (a) 2.0
 - (b) 2.3
 - (c) 2.5
 - (d) 3.0
 - (e) The answer cannot be computed from the information given.
- 4. Which of the following random variables should be considered continuous?
 - (a) The time it takes for a randomly chosen woman to run 100 meters
 - (b) The number of brothers a randomly chosen person has
 - (c) The number of cars owned by a randomly chosen adult male
 - (d) The number of orders received by a mail order company in a randomly chosen week
 - (e) None of the above

- 5. Let the random variable X represent the profit made on a randomly selected day by a certain store. Assume that X is normal with mean \$360 and standard deviation \$50. What is the value of P(X > \$400)?
 (a) 0.2119
 (b) 0.2881
 (c) 0.7881
 (d) 0.8450
 - (e) The answer cannot be computed from the information given.

Part 2: Free Response

Answer completely, but be concise. Write sequentially and show all steps.

The probability that 0, 1, 2, 3, or 4 people will seek treatment for the flu during any given hour at an emergency room is shown in the distribution.

<u>X</u>	0	11	2	3	4
P(X)	0.12	0.25	0.32	0.24	0.06

- **6.** What does the random variable count or measure?
- 7. What is the mean of X?
- **8.** What is the variance and standard deviation of X?

9. If a player rolls two dice and gets a sum of 2 or 12, he wins \$20. If the person gets a 7, he wins \$5. The cost to play the game is \$3. Find the expectation of the game.

A box contains 5 pennies, 5 dimes, 1 quarter, and 1 half dollar. You reach into the box (without looking) and select a single coin.

- 10. Identify the random variable. X =
- 11. Construct a probability distribution for this data.
- 12. If you reach into the box and randomly select one coin, what is the probability you will get something between 5 cents and 35 cents?

Here is the probability distribution function for a continuous random variable.

Determine the following probabilities:

13.
$$P(0 \le X \le 3) =$$

14.
$$P(2 \le X \le 3) =$$

15.
$$P(X = 2) =$$

16.
$$P(X < 2) =$$

17.
$$P(1 < X < 3) =$$

Suppose that the discrete random variable has the following probability distribution.

$$\frac{X}{P(X)} = \frac{1}{1/4} = \frac{3}{1/4} = \frac{5}{1/2}$$

- 18. Find the mean μ_X of X.
- 19. Find the variance $(s_x)^2$ of X.

20. Define the new random variable Y = 3X + 1. Use the properties of the mean of linear functions of random variables and your results in the previous problems to find the mean of Y.

- 21. Use the properties of the variance of linear functions of random variables to calculate the variance and standard deviation of the new random variable Y.
 - (1) b (2) c (3) b (4) a (5) a (6) X = the number of people who will seek treatment for the flu during any given hour at an emergency room. (7) $\mu_X = 1.85$ (8) $(\sigma_X)^2 = 1.193$, so $\sigma_X = 1.09$

$$\mu_X = \$1.94. \ (10) \quad X = payout$$

$$(11) \quad \frac{x}{P(X)} \quad \frac{.50}{1/12} \quad \frac{.25}{1/12} \quad \frac{.10}{5/12} \quad \frac{.01}{5/12}$$

(12)
$$P(.05 < X < .35) = P(X = .10) + P(X = .25) = 6/12 = .5$$
 (13) 0.8 (14) 0.2 (15) 0 (16) 0.6

(17) 0.5 (18)
$$\mu_X = 3.5$$
 (19) $(\sigma_X)^2 = 2.75$ (20) $\mu_Y = 3 \mu_X + 1 = 3(3.5) + 1 = 11.5$

(21)
$$(\sigma_Y)^2 = (\sigma_{3X+1})^2 = 9(\sigma_X)^2 = 9(2.75) = 24.75$$
. $\sigma_Y = \sqrt{24.75} = 4.975$.