Name:

Directions: Work on these sheets.

Part 1: Multiple Choice. Circle the letter corresponding to the best answer.

- 1. A dealer in the Sands Casino in Las Vegas selects 40 cards from a standard deck of 52 cards. Let Y be the number of red cards (hearts or diamonds) in the 40 cards selected. Which of the following best describes this setting:
 - (a) Y has a binomial distribution with n = 40 observations and probability of success p = 0.5.
 - (b) Y has a binomial distribution with n=40 observations and probability of success p=0.5, provided the deck is shuffled well.
 - (c) Y has a binomial distribution with n=40 observations and probability of success p=0.5, provided after selecting a card it is replaced in the deck and the deck is shuffled well before the next card is selected.
 - (d) Y has a normal distribution with mean p = 0.5.
- 2. In a certain large population, 40% of households have a total annual income of over \$70,000. A simple random sample is taken of 4 of these households. Let X be the number of households in the sample with an annual income of over \$70,000 and assume that the binomial assumptions are reasonable. What is the mean of X?
 - (a) 1.6
 - (b) 28,000
 - (c) 0.96
 - (d) 2, since the mean must be an integer
 - (e) The answer cannot be computed from the information given.
- 3. The probability that a three-year-old battery still works is 0.8. A cassette recorder requires four working batteries to operate. The state of batteries can be regarded as independent, and four three-year-old batteries are selected for the cassette recorder. What is the probability that the cassette recorder operates?
 - (a) 0.9984
 - (b) 0.8000
 - (c) 0.5904
 - (d) 0.4096
 - (e) The answer cannot be computed from the information given.
- 4. Twenty percent of all trucks undergoing a certain inspection will fail the inspection. Assume that trucks are independently undergoing this inspection, one at a time. The expected number of trucks inspected before a truck fails inspection is
 - (a) 2
 - (b) 4
 - (c) 5
 - (d) 20
 - (e) The answer cannot be computed from the information given.

5.	Two percent of the circuit boards manufactured by a particular company are defective. If circuit boards are randomly selected for testing, the probability that the number of circuit boards inspected before a defective board is found is greater than 10 is (a) 1.024×10^{7}
	(b) 5.12×10^{7}
	(c) 0.1829 (d) 0.8171 (e) The answer cannot be computed from the information given

Part 2: Free Response

Answer completely, but be concise. Write sequentially and show all steps.

A headache remedy is said to be 80% effective in curing headaches caused by simple nervous tension. An investigator tests this remedy on 100 randomly selected patients suffering from nervous tension.

6. Define the random variable being measured. X =

What kind of distribution does X have?

7. Calculate the mean and standard deviation of X.

- 8. Determine the probability that exactly 80 subjects experience headache relief with this remedy.
- 9. What is the probability that between 75 and 90 (inclusive) of the patients will obtain relief? Justify your method of solution.

Chapter 8

The Ferrells have three children: Jennifer, Jessica, and Jaclyn. If we assume that a couple is equally likely to have a girl or a boy, then how unusual is it for a family like the Ferrells to have three children who are all girls. Let X = number of girls (in a family of three children).

- 10. Construct a pdf (probability distribution function) table for the variable X.
- 11. Construct a pdf histogram for X.

- 12. Construct a cdf (cumulative distribution function) table for X.
- 13. Construct a cdf histogram for X.

14. What is the probability that a family like the Ferrells would have three children who are all girls?

A survey conducted by the Harris polling organization discovered that 63% of all Americans are overweight. Suppose that a number of randomly selected Americans are weighed.

- 15. Find the probability that 18 or more of the 30 students in a particular adult Sunday School class are overweight.
- 16. How many Americans would you expect to weigh before you encounter the first overweight individual?
- 17. What is the probability that it takes more than 5 attempts before an overweight person is found?
- 18. Construct the cumulative distribution table (stop at n = 6) for the number of Americans weighed before an overweight person was found.

19. Sketch a cumulative distribution histogram (stop at n = 6) for the table you constructed in the previous problem. Don't forget to label the axes.

(1) c (2) a (3) d (4) c (5) d (6) X = number of patients whose headaches are cured. X is B(n, p) = B(100, .8). (7) $\mu = np = 100(.8) = 80$. $\sigma = \sqrt{(80(.2))} = \sqrt{16} = 4$. (8) P(X = 80) = binompdf(100, .8, 80) = .0993. (9) $P(75 \le X \le 90) = binomcdf(100, .8, 90) - binomcdf(100, .8, 74) = .9976664 - .087475 = .9102$.

(11) See graph.

(12)
$$x 0 1 2 3$$

P(X) .125 .5 .875 1

(13) See graph.

(14) P(X = 3) = 1/8 = .125 = binompdf(3, .5, 3). (15) X is B(30, .63). $P(X \ge 18) = 1 - bincdf(30, .63, 17) = .7055$. (16) The random variable, Y = number of Americans weighed before an overweight individual is observed, is geometric. $\mu_Y = 1/p = 1/.63 = 1.5873$. (17) $P(Y > 5) = (1 - p)^n = (.37)^5 = .0069$.

(19) See graph.

Chapter 8

Solutions