AP STATISTICS: SEMESTER 1 REVIEW

Chapter 1

- 1. What type of graphs would be appropriate to display categorical data?
- 2. What 3 things must always be mentioned when describing a quantitative distribution?
- 3. Which is affected by extreme values: mean or median?
- 4. What is the rule for justifying outliers?
- 5. What is the difference between a frequency distribution and a relative frequency distribution?

Chapter 2

- 6. What is the area under a density curve?
- 7. The <u>(mean or median)</u> of a density curve is the equal-areas point, the point that divides the area under the curve in half.
- 8. The <u>(mean or median)</u> of a density curve is the balance point, at which the curve would balance if made of solid material.
- 9. If a density curve is skewed to the right, the <u>(mean or median)</u> will be further to the right than the <u>(mean or median)</u>.
- 10. Identify what each variable represents: $oldsymbol{x}$, $oldsymbol{\mu}$, $oldsymbol{s}$, and $oldsymbol{\sigma}$?
- 11. The distribution of pregnancy length from conception to birth for humans follows a Normal N(266, 16).
 - a. Sketch the graph.
 - b. What is the 68-95-99.7 rule?
 - c. What z-score does a pregnancy of 257 days have?
 - d. What percent of humans have a pregnancy lasting less than 257 days?
 - e. What percent of humans have a pregnancy lasting longer than 280 days?
 - f. What percent of humans have a pregnancy lasting between 260 and 270 days?
 - g. How long would a pregnancy have to last to be in the longest 10% of all pregnancies?

Chapter 3

- 12. The scatterplot shows calories vs sodium (mg) for hotdogs.
- Sodium (mg)

- a. What is the response variable?
- b. What is the explanatory variable?
- c. Describe the strength and direction?
- d. Are there outliers? If so, are they influential?

- # calories
- 13. A linear regression was performed: sodium = -85.41 + 3.11 (calories); r = .9195, $R^2 = .845$
 - a. What is the slope of this line, and what does it tell you in this context?
 - b. Predict the amount of sodium in a hot dog with 155 calories.
 - c. When is a residual negative?
 - d. Interpret r and r2.
 - e. If I change the units on sodium to grams instead of milligrams, what happens to the correlation?
 - f. If I switch the explanatory and response variables, what happens to the correlation?
- 14. What two things does correlation tell us about a scatter plot?
- 15. What is the highest correlation possible?

- 16. What is the lowest correlation possible?
- 17. Is correlation resistant to outliers?
- 18. Does a high correlation indicate a strong cause-effect relationship?
- 19. How can you use a residual plot to tell if a line is a good model for data?
- 21. What is a lurking variable?

Chapter 5

- 22. Why is a two-way table called a two-way table?
- 23. The table shows smoking status and the highest education level completed by a random sample of adults.

	Smoking Status			
Education	Never smoked	Smoked, but quit	Smokes	
Did not complete high school	82	19	113	
Completed high school	97	25	103	
1 to 3 years of college	92	49	59	
4 or more years of college	86	63	37	

- a. Fill in the marginal distributions for this table.
- b. What percent of these people smoke?
- c. What % of never-smokers completed high school?
- d. What % of those with 4 or more years of college have quit smoking?
- e. What % of smokers did not finish high school?
- f. What conclusion can be drawn about smoking and education from this table?

Chapter 4

- 24. What is the difference between an observational study and an experiment?
- 25. What is a voluntary response sample and why is it biased?
- 26. How are a population and a sample related but different?
- 27. Name and define a SRS.
- 28. What is a stratified random sample?
- 29. What is a cluster sample?
- 30. What is undercoverage?
- 31. What is nonresponse?
- 32. What is response bias?
- 33. Biased is reduced by _____, and Variability is reduced by _____.
- 34. Explanatory variables in experiments are often called _____.
- 35. If I test a drug at 100 mg, 200 mg, and 300 mg, I am testing one variable at three _____.
- 36. What is the placebo effect?
- 37. What is the purpose of a control group?
- 38. What are the 3 principles of experimental design?
- 39. What does double-blind mean?
- 40. What is block design and why is it important?

Chapter 5

- 41. What makes events independent?
- 42. You are going to flip a coin 3 times and note how many heads you get. What is the sample space?
- 43. You are going to flip a coin 3 times and note what you get on each flip. What is the sample space?
- 44. How many different four-digit numbers can you make?
- 45. How many different four-digit numbers can you make without repeating digits?
- 46. Any probability is a number between (and including) ____ and ____.
- 47. If S is the sample space, P(S) =__.
- 48. What are complementary events?
- 49. What are disjoint events?
- 50. Beth can beat Erica in tennis 9% of the time. Erica can swim faster than Beth 8% of the time.
 - a. What is the probability that Beth would beat Erica in a tennis match and in a swimming race?
 - b. What assumption are you making in (a)? Do you think this assumption is valid?
- 52. What is the union of two events?
- 53. What is an intersection of two events?
- 54. Perform an independence test on the smoking/education chart from problem #25 to show that smoking status and education are not independent.
- 55. Make a Venn diagram for the following situation: Safety engineers must determine whether industrial workers can operate a machine's emergency shutoff device. Among a group of test subjects, 66% were successful with their left hands, 82% with their right hands, and 51% with both hands.
 - a. What percent of these workers could not operate the switch with either hand?
 - b. If the worker can operate the switch with their right hand, what is the probability that they can operate the switch with their left hand?
- 56. Consider the process of a drawing a card from a standard deck and replacing it. Let A be drawing a heart, B be drawing a king, and C be drawing a spade.
 - a. Are the events A and B disjoint? Explain.
 - b. Are the events A and B independent? Explain.
 - c. Are the events A and C disjoint? Explain.
 - d. Are the events A and C independent? Explain.
- 57. What does the symbol ∪ mean?
- 58. What does the symbol ∩ mean?

Chapter 6

- 59. Given the probability distribution:
 - a. what is P(X > 2)?
 - b. what is P(X > 2)?
 - c. Find the mean and SD.
- 60. Normal distributions are (continuous or discrete).
- 61. Expected value is another name for _____.

Grade	0	1	2	3	4
Probability	0.05	0.28	0.19	0.32	0.16

- 62. What is the law of large numbers?
- 63. Before you can use the rules for variances you must make sure the variables are _____.
- 64. Consider the scores for 2 different tests in a statistics class. For Test 1; the class average was 80 with a standard deviation of 10. For Test 2, the class average was 70 with a standard deviation of 12.
 - a. What is the mean combined score for the tests?
 - b. What is the sd for the combined scores?
 - c. What is the difference in the mean of the tests?
 - d. What is the sd for the difference of the tests?
 - e. If I cut the test scores on Test 2 in half and add 50, what is the new mean and SD?
- 65. What are the four conditions of a binomial distribution?
- 66. How is a geometric distribution different from a binomial distribution?
- 67. The probability that a child born to a certain set of parents will have blood type AB is 25%. The parents have four children. X is the number of those children with blood type AB.
 - a. Is this binomial or geometric?
 - b. Find the mean and SD.
 - c. find P(X = 2)
 - d. find $P(X \ge 1)$
- 68. Parents continue having children until they have a child with type AB blood. X is the number of children they have to give birth to in order to have one child with type AB blood.
 - a. Is this binomial or geometric?
 - b. Find the mean.
 - c. find P(X = 1)
 - d. find P(X > 5)

AP Statistics: Exam Review Answer Key

- 1. pie graph, bar graph
- 2. center, shape, spread
- 3. mean
- 4. lower fence: Q1 1.5(IQR) upper fence: Q3 + 1.5(IQR) Any value beyond fences is an outlier
- 5. a frequency distribution shows counts and relative frequency shows proportions.
- 6. area = 1
- 7. median
- 8. mean
- 9. mean, median
- 10. x-bar is the sample mean, μ = population mean, s = sample SD, σ = population SD

11. a.

b. About 68% of the observations will fall within one sd of the mean. About 95% of the observations will fall within two sd of the mean. About 99.7% of the observations will fall within three sd of the mean

218 234 250 266 282 298 314

- c. -0.5625
- d. 28.69% e. 19.08 %
- f. 24.49%
- g. 286.5 days
- 12. a. sodium b. calories slope of the LSRL would decrease and correlation would increase.
- c. positive and strong linear d. yes, the point in the lower left, if it was removed the
- 13. a. slope = 3.11: for each increase in 1 calorie, the sodium is predicted to increase by 3.11mgi
- b. 395.64 mg c. a residual is negative when the predicted y is larger than the actual y
- d. r = .9195 which indicates a strong, positive linear relationship, $R^2 = .845$ 84.5% of the variation in sodium can be explained by the change in calories. e. correlation stays the same
- f. correlation stays the same= 0.9195
- 14. the strength and direction of a linear relationship
- 15. 1 or -1
- 16. 0
- 17. no, not resistant to outliers
- 18. no, correlation does not necessarily imply causation
- 19. The residuals should be randomly scattered and relatively close to zero.
- 21. A lurking var. is a variable that may influence values of the variables in a study, but it is not part of the study.
- 22. There are two variables.
- 23 a. Marginal distributions are the totals for each row and column.
- b. 312/825 = 37.82%
- c. 97/357 = 27.17%
- d. 63/186 = 33.87%
- e. 113/312 = 36.22%
- f. The more education a person has completed, the less likely they are to smoke; 53% of those who did not complete high school smoke, 45% of those who completed high school smoke, 30% of those with 1-3 years of college smoke, and 20% of those with 4 or more years of college smoke.
- 24. In an experiment, a treatment is imposed.
- 25. The subjects select themselves to be in the sample. Usually people with strong feelings (negative) will want to be in the sample.
- 26. A sample is a subset of the population.
- 27. Simple Random Sample: each member of the population is equally likely to be selected and each possible sample is equally likely to be selected.
- 28. The population is divided in to groups, then a random sample is chosen from each group.
- 29. The population is divided into groups. Certain groups are chosen randomly and all members of the chosen groups are sampled.
- 30. One or more groups with similar characteristics do not have a chance to be chosen for the sample.
- 31. A subject chosen to be in the sample does not respond or refused to participate.
- 32. The subject is influenced to respond a certain way (by the wording of the question, interviewer etc)

- 33. Bias is reduced by random sampling, variability is reduced by large samples
- 34. Factors
- 35. Levels
- 36. Some individuals respond to any form of treatment, regardless of whether it is "real" or "fake".
- 37. To reduce or eliminate the effects of lurking variables.
- 38. Control the effects of lurking variables by comparing several treatments.

Randomly assign subjects to treatment groups.

Replicate the experiment on many subjects to reduce chance variation.

- 39. In a double-blind experiment, neither the subjects nor the persons recording the observations knows which subject received which treatment. This reduces bias.
- 40. A block design divides the sample into groups of similar characteristics to reduce the effects of lurking variables. Within each group, units/subjects are randomly assigned to each of the treatment groups.
- 41. Two events are independent if knowing that one occurs does not change the probability that the other occurs. $P(A \mid B) = P(A)$ and $P(B \mid A) = P(B)$
- 42. $S = \{0,1,2,3\}$
- 43. $S = \{ HHHH HHT HTH HTT THH THT TTH TTT \}$
- 44. 104
- 45.(10)(9)(8)(7) = 5050
- 46. 0, 1
- 47. 1
- 48. If A is the event that something occurs, then A complement is the event that it does not occur.
- 49. Disjoint events have no outcomes in common. The events cannot happen at the same time.
- 50. a. (0.09)(0.92) = 0.0828 b. independence is probably not valid since the strength of one player can impact the other player
- 52. The event that either one or both occur.
- 53. The event that both occur.
- 54. Let A smokes and B = 4 + years of college; $P(A \mid B) = 0.1989$ P(A) = 0.3782
- 55. a) 3% b) 0.622
- 56. a) No, the king of hearts is a member of A and B.
- b. Yes, P(H) = P(H/K), both probabilities = .25. (other ways to show independence)
- c. Yes, a card cannot be both a heart and a spade.
- d. No, knowing the card is a heart changes the probability that is will be a spade. (disjoint events cannot be independent)
- 57. Union of events ("or")
- 58. Intersection of events ("and")
- 59. a) 0.48 b) 0.67 c. 2.26, 1.17
- 60. continuous
- 61. mean
- 62. As the number of observations increases, the sample mean approaches the population mean and the expected value approaches the population mean.
- 63. independent
- 64. a. 150 b. 15.6 c. 10 d. 15.6 e. 85, 6
- 65. 2 outcomes: success or failure, there is a fixed number of observations (n), observations are independent, the probability of success (p) remains constant
- 66. not a fixed number of trials, the variable of interest is the number of trials required to obtain the first success
- 67. a. binomial
- b. 1, .866
- c. binompdf (4, 0.25, 2) = 0.2109
- d) binompdf (4, 0.25, 1) + binompdf (4, 0.25, 2) + binompdf (4, 0.25, 3) + binompdf (4, 0.25, 4) = 0.6835 OR 1 binompdf (4, 0.25, 0) = 0.6835
- 68. a. geometric;
- b. 4
- c. geometpdf (0.25, 1) = 0.25 d) 1- geometcdf (0.25, 5) = 0.2373