AP Statistics Practice Test

(page 274)

T4.1 **c.** A census is defined to be measuring all individuals in the population.

T4.2 e. Ignore numbers that are larger than 816 or are duplicate numbers.

T4.3 **d.** In order to infer cause and effect, we must run a well-designed experiment. This was an observational study.

T4.4 **c.** This is the definition of a Simple Random Sample.

T4.5 **b.** By randomly assigning treatments we are attempting to make the different groups look as similar as possible so that we can reduce the likelihood of a confounding variable.

T4.6 **b.** It is very difficult to show cause and effect using observational studies. It is much easier in an experiment where the researcher has control over how the treatments are applied.

T4.7 **d.** By stratifying we can control how many people we survey in each of the different kinds of areas.

T4.8 **d.** Bias in the responses means that you are getting responses that are systematically different from the truth

T4.9 **d.** This is a completely randomized design because you randomly assign subjects to one of the four groups. There are two factors: Length of ad (30 seconds or 60 seconds) and Repeat (1 time or 3 times).

T4.10 **b.** In a matched pairs design, the two observations in the pair should be as similar as possible. So use a subjective method for pairing the plots. Once the pairs are chosen, then randomly assign the two treatments to the two plots in the pair.

T4.11 **d.** The teachers who responded likely feel more strongly about the issue and shouldn't be considered to be representative of the entire population of teachers under consideration.

AP Statistics Practice Test

(page 336)

T5.1 **c.** Probability only tells us what happens approximately in the long run, not what will happen in the short run.

T5.2 **d.** You need exactly 62 of the 100 2-digit numbers to represent the event "having heard of Coca-Cola."

T5.3 c. Add the probabilities for 3, 4 and 5 cars.

T5.4 **b.** All 2-digit numbers among the first 10 are between 00 and 97 except 98.

T5.5 **b.** 255 of the 1000 students had a GPA below 2.

T5.6 c. There are 285 students who either have a GPA below 2, have skipped many classes or both.

T5.7 e. There are 110 students who have skipped many classes. 80 of them have a GPA below 2.

T5.8 **e.** If A and B are independent, then we don't know whether B has occurred if A occurred. But if A and B are mutually exclusive, then if B has occurred then we know that A couldn't have occurred.

T5.9 **b.** *P* (woman \cup never married = *P* (woman) + *P* (never married) – *P* (woman \cap never married)

T5.10 **c.** We want *P* (first is picture \cap second is picture \cap third is picture) = $\left(\frac{12}{52}\right)\left(\frac{11}{51}\right)\left(\frac{10}{50}\right) \approx 0.01$.

AP Statistics Practice Test

(page 459)

T6.1 **b.** Add the probabilities for the events that X is 3 and 4.

T6.2 **d.** The mean for one person is 2.3 and the mean of the sum for 3 people is the sum of the means.

T6.3 e. All other pairs of variables would likely change together (e.g. those who are taller, likely also weigh more).

T6.4 **d.** Y = 1.5X, so to get the mean and standard deviation of *Y*, multiply the mean and standard deviation of *X* by 1.5.

T6.5 **d.** The mean of the sum of random variables is the sum of the means of the individual random variables.

T6.6 **d.** To find the standard deviation of the sum of random variables, add their variances and take the square root.

T6.7 **c.** In part (a) we are looking for 2 successes, not 1, in part (b) the trials are not independent (not putting the cards back after dealing), in part (d) we have a fixed number of trials and are counting the number of successes (binomial random variable) and in part (e) we have a fixed number of trials and are counting the number of successes (binomial random variable).

T6.8 **b.** This is a binomial setting so the number of cases that hospital has to deal with is a binomial random variable with n = 17 and p = 0.4. The question is looking for $P(X > 10) = 1 - P(X \le 10)$

T6.9 **b.** This cannot be a geometric distribution because the bar above X = 1 is not the tallest. Using a calculator you can verify that binompdf (8, 0.3, 7) \approx 0.001224.

T6.10 **c.** This is a geometric random variable and we are looking for P(X = 5).